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EFFECT OF SURFACE EMISSIVITY ON HEAT TRANSFER 

BY SIMULTANEOUS CONDUCTION AND RADIATION? 

R. VISKANTA: and R. J. GROSHg 

(Received 2 January 1962) 

Abstract-This paper is an extension of a previous investigation of the authors’ [I] and considers 
the effect of surface emissivity on temperature distribution and heat transfer in a thermal radiation 
absorbing and emitting media. Iterative-type solutions of a non-linear integral equation, which 
governs the temperature field, are obtained for a wide range of parameters. Temperature distributions 

are given in a graphical form and heat-transfer results are tabulated. 

NOMENCLATURE 

emissive power; 
irradiation-radiant energy Incident on 
a surface; 
exponential integral function defined 
as: 
En(~) = S; pfl -2 exp (- T/P) dp 

= IP exp (- TP)~,L-” +; 

function defined by equation (2); 
thermal conductivity; 
dimensionless parameter, &~/duT*~; 

index of refraction; 
total heat flux (conduction + radia- 
tion); 
heat flux by conduction; 
heat flux by radiation; 
radiosity-radiant energy leaving a 
surface ; 
absolute temperature; 
arbitrary temperature; 
position co-ordinate; 
dimensionless radiosity, R/uT*~; 
emissivity of the surface; 
dimensionless temperature, T/T* ; 
absorption coefficient; 
Stefan-Boltzmann constant; 
-- _~ _..__-___ _ 
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optical depth of the medium defined as 

J-,yK(Y)dY; 
dummy integration variable; 
optical thickness of the medium defined 

by J-: K(Y) dv. 

Subscripts 
1 refers to the lower plate; 
2 refers to the upper plate. 

INTRODUCTION 

IN A recent paper [l] the authors formulated the 
problem of heat transfer by simultaneous 
conduction and radiation in an absorbing 
medium and reported results for the ideal case 
when the surfaces enclosing the medium are 
black. This system was essentially two infinite, 
parallel, isothermal plates separated by an 
isotropic and homogeneous gray absorbing and 
emitting medium. It is therefore of interest to 
study a more realistic situation and certainly a 
more important engineering case in which the 
surfaces are gray and are diffuse reflectors. The 
results of extended calculations which were made 
to include the effect of surface emissivity on the 
steady-state temperature distribution and on 
heat transfer are reported below for the same 
physical system as in [I]. 

Since writing the original paper in June of 
1960 [I], several new papers related to this topic 
have come to the authors’ attention: Goulard 
and Goulard [2] studied a one-dimensional 
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problem of simultaneous conduction and radia- 
tion. They considered the effects of non-black 
walls and presented some results for an optically 
thin (TV Q 1) gas. Numerical solutions of exact 
formulations of radiant-heat-transfer problems 
in an absorbing and heat-generating gas en- 
closed between two black surfaces were given by 
Usiskin and Sparrow [3]. Edwards [4], on the 
other hand, studied radiant heat transfer in an 
infinite, non-gray, parallel plane enclosure 
containing an isothermal carbon dioxide- 
nitrogen gas mixture. He surveyed the existing 
band data and showed the approximations used 
and details involved in applying the band 
approximations to engineering heat-transfer 
problems. Konakov [5], using a diffusion 
concept, studied pure radiation and simultaneous 
conduction and radiation in an absorbing 
medium between two infinite parallel plates, an 
infinitely long cylindrical annulus and a spherical 
annulus. 

METHOD OF CALCULATION 

The formulation of the problem is given in [I] 
and will not be repeated here. For convenience 
the non-linear integral equation giving the 
normalized temperature distribution, 0 = T/T*, 
is given below: 

O(T) = G(T) + A 
s 

“?2’(7’) {- &((T - 7’1) 

+ &(T’) + T/TO i;, (TO - T’) - E, (T’)]) 

e4(T’) dT’, 
where 

1 

( [ 

7 
G(T) = 2N 2N 0, + < (0, - 0,) 1 

+ PI [; (1 - ;) + JOEI - J54(T) 
I 

+&[; ;+ (1 -;) E4(TO) 1 

- E4(TO - T) 

11 J 

. 

The normalized radiosities are given by 

PI = El@: + 20 - 4 Kw3(~d 

(1) 

(2) 

+ ]z n’(T’) .&(7’) a4(T’) dT’] (3) 

+ 12 n’(~‘) E,(T, - 7’) 04(T’) dr’]. (4) 

at surfaces 7 = 0 and 7 = TO, respectively. The 
first terms in equations (3) and (4) represent 
emission from the surfaces and the second terms 
in these equations account for the amount of 
energy which is incident on the surface and the 
fraction of this energy which is reflected. 

For black surfaces, the function G(T) is in- 
dependent of emissivity and the temperature 
distribution in the medium for given values of 
0, and 0,. However, when the surfaces are not 
black &, fi2 and G(r) depend on E and the tem- 
perature distribution. 

The method of successive approximation 
which was used to solve equation (I) was as 
follows: A function @j(T) was assumed and 
inserted into the right-hand side of equations 
(3) and (4), and the indicated integration was 
performed. This produced two algebraic equa- 
tions in two unknowns &,r and &,j [see equations 
(3) and (4)]. These two equations were then 
solved for dimensionless radiosities. These 
radiosities were then used to evaluate Gi. An 
iteration which was similar to that described in 
[I] was then followed. 

Since the system considered is in steady state, 
the heat-transfer rate is constant and is the sum 
of conductive and radiative fluxes. The total 
heat-transfer rate can be written in dimension- 
less form as (see equations (23) and (25) in [l]): 

(1 - %) EdTO) + ;; E4(TO) - ,11 
0 

I 

+ f E, 04, 

- c2) E,(T, - T’) 

+ k &(To - T) - ; &(r’)] 

o4 (7') dT’ 1. 

(5) 
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The left-hand side of this equation is the ratio 
of the total heat flux to the emissive power of a 
black body at a temperature T*. Because the 
equation governing the temperature distribution 
is non-linear, equation (5) is the most general 
expression for dimensionless heat-transfer rate 
that the authors could find. If only heat con- 
duction was present the heat flux would be 
given by the first term on the right-hand side of 
equation (5). The second, third, fourth and 
fifth terms represent heat transfer by thermal 
radiation. 

DISCUSSION OF RESULTS 

Because the problem is non-linear, it is im- 
possible to find a definition of dimensionless tem- 
perature that would eliminate the necessity to 
specify 0, and 0, for a given problem. It also was 
not possible to cover the complete range of 
parameters TV, N, Q, Ed, O,, 0, and n. Thus, the 
parameters were chosen in such a fashion as to 
shed most light on the problem. To simplify 
matters, it was assumed that the index of re- 
fraction was 1 and that the emissivities of the 
surfaces were the same, i.e. p1 = Q. This postu- 
late was made in order to reduce the number of 
parameters entering the problem; no additional 
difficulty, other than that involved in com- 
putation time, would have been introduced if 
these assumptions were not made. For the sake 
of completeness, the results for the case N = 0, 
i.e. for pure radiation, are included in this note. 
The results for this case were obtained in a more 
general form, in terms of a dimensionless black- 
body emissive power, in another paper [6]. 

Before proceeding to discuss the temperature 
distribution, it is of interest to consider the 
effect of emissivity on the radiosities. The 
discussion of the results can then be followed 
more readily. For small values of TV and o < 1, 
the radiosity at the surface 1 [see equation (3)] 
is influenced largely by the radiosity of the 
second surface, /&, because E,(O) = +, and the 
effect of radiation from the medium, third term 
in equation (3), is small. On the other hand, for 
large values of TV, the effect of & on & is very 
small, in this case, E,(lO) = 3.5488 x 1O-6; 
but the radiation from the medium is more 
significant. It was found that fil increases with 

the decrease in E, but the contrary is true for 
P~;as~0-+0,81+W. 

If the radiant heat flux is essentially constant, 
or is a small fraction of the total heat flux, the 
temperature gradient will be practically constant 
across the medium. This is the case of large N 
and/or small T,,. The effect of emissivity is 
therefore most pronounced for larger values of 
70 and small values of the parameter N; hence, 
in the interest of brevity the results will be given 
,only for these cases. For example, in the case 
TV = O-1 and N = 0.01, the temperature pro- 
files for E = 0.1 differ only by a fraction of 1 
per cent from those at E = 1.0. 

The effect of emissivity on 0 for N = 0.01 and 
optical thicknesses TV = 1-O and 70 = IO.0 are 
shown in Figs. 1 and 2, respectively. The 
temperature profile for the case E = 0.9 is very 
close to that of E = 1.0; therefore, separate 
curves were not drawn. It can be seen that the 
temperature gradients at both surfaces increase 
with the decrease in E. The effect of emissivity on 
the temperature distribution at the hot wall is 
more pronounced for To = 1-O than for 
r0 = 10.0. One other fact which is not readily 
apparent from the curves should be noted: 
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FIG. 1. Variation of temperature with optical depth 
for N = 0.01 and 70 = 1. 
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FIG. 2. Variation of temperature with optical depth 
for N = 0.01 and Q = 10. 

The radiosities @, and /?2 are practically indepen- 
dent of each other for this latter case and there- 
fore the temperature profile for a given value 
of E at a wall is nearly constant with the 
emissivity of the other surface. 

Figure 3 shows the temperature profiles for 
the case of pure radiation (N = 0). For a given 
l the tendency towards flatness increases with 
the decreasing TV. In an enclosure where the 
optical thickness is small, there is negligible 
absorption of energy, no matter where in the 
enclosure the energy was emitted. Since any 
point in the medium may transfer heat directly 
to the wall without recourse to other points. 
there is no reason for the temperature gradient 
to exist. The results for 70 = 0.1 closely approxi- 
mate this situation. The effect of emissivity for 
a given value of 7” is to further flatten the 
temperature profile. For large optical thickness, 
the energy is transferred from one element of 
the medium to its neighbor, and then finally to 
the wall. The thermal resistance associated with 
this type of transport process gives rise to a 
temperature gradient, as evidenced by inspection 
of Fig. 3. The transfer of energy between adjacent 

elements is quite similar to molecular heat 
conduction. Note the interesting result that the 
temperature level at the cool surface increases 
with the decrease in TV, but the reverse is true 
at the hot surface. In passing, it is interesting to 
note that the results of Usiskin and Sparrow [3] 
and those of this study for black surfaces, even 
though given in terms of different parameters, 
are, within the accuracy of numerical calcula- 
tions, the same. 
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FIG. 3. Temperature profiles for 8, = 0.5 and 
O,= l.OwhenN=O. 
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The temperature profiles obtained by Goulard energy flux than in the regions further removed 
and Goulard [2] at the cool wall do not agree in from the walls. The temperature gradients in the 
trend with those of this note. For a case N < 0.01 neighborhood of the walls, as was already noted, 
and TV < I.0 they show a decrease in tempera- increase with the decrease in emissivity, and 
ture gradient with the decrease in emissivity. therefore the energy flux by conduction in these 
This is probably due to the fact that in their case regions becomes a larger fraction of the total 
the hot surface was completely transparent and energy flux with higher reflectivity walls. 
the thermal conductivity and the absorption Referring to equation (5), we note that the 
coefficients varied with temperature. thermal conductivity is independent of tempera- 

Since the system considered here is in a steady ture, and the heat transfer by conduction, first 
state, the total energy transport, conduction term in equation (5), does not depend on the 
plus radiation, across the medium is constant. emissivity. The conductive flux depends only on 
To insure this, it is necessary for variations in the the temperature gradient which exists as if the 
energy flux by radiation to be compensated by medium were not radiating. 
opposite variations in the conductive energy The results of heat-transfer calculations are 
flux. Thus, from the temperature profiles in given in Table 1. Both the dimensionless heat 
Figs. 1 and 2, we can conclude that in the flux, q”/aT*4, and the ratio of the heat flux by 
vicinity of the surfaces the energy transfer by conduction to the total heat flux, qr/q”, are 
conduction is a larger fraction of the total given. This last ratio indicates most clearly the 
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Table I. Results qf heat-transjkr calculations 

0.01 0.1 
- 

1.0 
qff/aT*4 q;‘/q” q”laT*4 qZiq’< / q”/oTe4 q:rlq’f 

_ 

I 
(a) 1o = 0.1, 0, = 0.5, 8, = 1.0 

1.074 
0928 
0.524 
@267 

0.596 
0.523 
0338 
0.156 

0658 
0.581 
0.390 
0,222 

0.114 
0.111 
0.104 
0.090 

0.186 
! 

2.880 0.694 
0.216 j 2.723 0.734 

;:;g 1 ;:g 8:;;; 

(b) ,ro = 1.0, 8, = 0.5, 6, 

0.0335 0.798 0.252 
0.0382 0.743 0.269 
00592 0.457 0.437 
0.1284 ~ 0.393 0.509 

2.600 
2.555 
2.397 
2.245 

I I 
Cc) ‘0, = 1.0, 0, = 0.1, 8, = 1.0 

0.0547 0.991 0.363 4.218 
0.0620 0.968 0.372 4.171 

8:::;: I 0.742 0.591 0.485 0609 3,994 3.752 

(d) z. = 10.0, 8, = 0.5, 8, = 1.0 

00175 I 0.131 0.153 0.315 
0.0180 0.130 
00192 

0.154 0.314 
0.122 0.164 0.307 

0.0222 1 0,115 0174 0.297 
/ 

20.88 0.9579 200.88 0.9956 
20.73 0.9648 200.73 0.9964 
20.33 0.9838 200.34 0.9983 
20.08 0.9960 200.08 0.9996 

0.769 2060 0.9709 
0.783 20.55 0.9732 
0.834 20.39 0.9809 
0.891 20.25 0.9977 

0.853 36.60 0.9836 
0.863 36.57 0.9845 
0.901 36.37 0.9898 
0.960 36.22 0.9939 

0.635 2.114 0.9461 
0.637 2.113 0.9465 
0.65 1 2.110 0.9479 
0.673 2.107 0.9492 
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contribution of conduction and radiation to the 
total heat flux. 

The results of Table l(d) with respect to the 
influence of emissivity on heat transfer by radia- 
tion (N = 0) are in agreement with those of [5]. 
The equation for radiant-energy flux, valid for 
T,, > 2, derived by Konakov is 

,I 
04 - (94 

qrlaT*4 = .j/$ + l/Q- 1 ; (70 - 2)' (6) 

This equation is identical in form, except for 
the factor (TV - 2), to an equation derived by 
Eckert and Drake [7] for a non-radiating 
medium. The deviations between the predictions 
of the approximate equation (6) and the results 
based on the solution of the integral equation (1) 
are not more than 3 per cent for the case when 
70 = 10. 

For simultaneous conduction and radiation, 
Konakov deduced an equation, equation (72) 
of [5], for the total heat flux which in the 
notation of this paper becomes 

q”/aT*& = q;/aT*4 + q;/oT*4 = 2N(O, - 0,) 

0; - 04 

+ l/E1 + i+C (7) 

Equation (7) is valid only for T,, < 2. Note that 
the first term on the right-hand side of this 
equation, expressing the heat transfer by con- 
duction, is smaller by a factor of 2/~,, than the 

first term on the right-hand side of equation (5). 
For TV = 0.1 the conductive energy flux pre- 
dicted by equation (7) is 20 times smaller than 
that of this note. The greatest deviation for 
radiant heat flux between the predictions of the 
simple equation (7) and the results of Table l(d) 
occur for l 1 = F~ = l.. It is not surprising that 
Konakov’s simplified analysis fails to predict 
correctly the conductive and radiative energy 
fluxes. The diffusion-type approximation is not 
expected to be valid for small optical thicknesses. 
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Zusammenfassung-Eine friihere Untersuchung der Autoren [l] ist hier fortgesetzt mit einer Betrach- 
tung des Einflusses des OberIlLchenemissionsvermtigens auf die Temperaturverteilung und den 
Wgrmeiibergang in einem Medium, das thermische Strahlung absorbiert und emittiert. Fiir einen 
grossen Bereich von Parametem ergaben sich IterativlGsungen fiir die das Temperaturfeld kennzeich- 
nende nichtlineare Integralgleichung. Die Temperaturverteilungen sind grafisch angegeben, die 

Ergebnisse der Wtirmeiibertragung tabelliert. 

hiHOTBqMSI--CTaTbR JJBJIFIeTCR pa3BMTIieM IIpeAbIfiylrlerO IKCne~OBaHHFl aBTOpOB [I] 51 

paccMaTpaBaeT BJIHRHKe CTeneHEl sepHOTb1 IIOBepXHOCTM Ha Tennonepefioc M pacnpeneneme 

TeMnepaTypbI B cpeAax, nornowamwax 12 mnymamwax TermoBoe zsanysfgi~e. &IR He- 

JIllHefiHOrO IHHTerpaJIbHOrO J'paBHeHHH, onmbIBam~er0 TemepaTypHoe none, nonyqesbr 

pemeam pa3HOCTHOrO TIma, npmogHbIe B IIIHipO~OM AtianaaoHe M3MeHeHYIFI napaMeTpoB. 

Pacnpe~e~eHmTemepaTypu npeAcTaBJIeHbIrpa~HsecIiEI,axapaKTep~cTMnnTennonepeHoca 

-B Bzqe Ta6nnq. 


